

Defining Inlet Hazard Areas (IHA) Using a 30-Year Risk Line

Ken Richardson North Carolina Division of Coastal Management 2017 Coastal GeoTools

Ebruary 9, 2017

What is an Inlet Hazard Area (IHA)?

Areas vulnerable to rapid change due to inlet related processes

AIIA

North Carolina has 19 active inlets:

- 12 with adjacent development
- 7 no adjacent development
- 2 Deep-draft inlets
- 17 Shallow-draft inlets
- 4 Migrating inlets
- 15 "oscillating" inlets

Oregon Inlet

OHatteras Inlet

Ocracoke Inlet
 Swash Inlet (Closed)

Orum Inlet

Bogue Inlet Beaufort Inlet Barden Inlet

•Mason Inlet (Relocated) •Masonboro Inlet

Bear Inlet Brown Inlet w River Inlet

Carolina Beach Inlet

New Inlet (Closed) Tubbs Inlet Cape Fear River Little River Inlet

IHA Boundary Update Needed: IHAs established in 1979

No longer reflect the "hazard"

Oceanfront erosion rates applied inside Shallotte Inlet

Inlet Hazard Area

Oceanfront erosion rates applied inside IHA

Common Inlet Problems:

- Loss of property and infrastructure
- Sandbag structures installed
- Alternative structures used (terminal groins)
- Continual beach re-nourishment needs

Inlets Areas Subject to Rapid Change

The same house sat at the ocean's edge at low tide until finally being destroyed by a storm in 2015

Sandbag Use: Inlets vs. Oceanfront

■ Oceanfront ■ Inlet Areas

10.00

Defining Inlet Hazard Areas Using a 30-Year Risk Line:

- Step 1: Map shorelines & vegetation lines
- Step 2: Map "Hybrid-Vegetation Line"
 - Step 3: Analyze shoreline change over time using Linear Regression (1970-2016)
 - Step 4: Define where inlet processes no longer dominate shoreline location (oceanfront-inlet transition)
- Step 5: Calculate & map projected hazard risk ("30 & 90-Year Risk Line")

Hybrid-Vegetation Line

Step 3: Analyze Shoreline Change

Transect spacing (50 feet)

Distance

- Linear Regression Rate (LRR) (ESRI's ArcMap & Analyzing Moving Boundaries using R – AMBUR)
- Smooth Raw Data using 5-Point Running Average (each transect rate is the average of the transect and the two transects on either side).

Steps 3: Analyze Shoreline Change

Lockwood Folly - Holden Beach (1970-2016)

stdev slope

Step 5: Calculate & map projected hazard risk ("30 & 90-Year Risk Line")

Measured from "Hybrid-Vegetation"

30-Year Risk Line = 30 x LRR x Multiplier 90-Year Risk Line = 90 x LRR X Multiplier

If accreting: Risk Line = 30×2 or 90×2 If eroding: If $SE_{IHA}/SE_A \le 1$, Multiplier = 1

If $SE_{IHA}/SE_A > 1$, Multiplier = SE_{IHA}/SE_A

Step 5: Defining "Hazard" – 30 & 90 Year Risk Lines

000000000000000000

90-Year Risk Line

30-Year Risk Line

Hybrid-Vegetation

Transect #54

Inlet Studies: What Next?

000000000

2010 Proposed IHA

2017 Proposed IHA

Current IHA

Transect #54

Questions

Ken Richardson Email: <u>ken.Richardson@ncdenr.gov</u>

North Carolina Division of Coastal Management